Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Heart ; 108(Suppl 2):A6, 2022.
Article in English | ProQuest Central | ID: covidwho-2064236

ABSTRACT

ObjectiveCOVID-19 primarily causes pneumonitis but can also cause myocarditis. Injury may be due to a generalised inflammatory immune process or by direct viral infection. Using 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) and cardiac magnetic resonance (CMR) imaging we correlated the metabolic activity/injury between the reticuloendothelial system (bone marrow [BM] and spleen) and myocardial/pulmonary tissue.Methods18F-FDG-PET/CT (n=29, fasted n=27) and CMR (n=23) were performed on hospitalised patients with acute COVID-19. 18F-FDG PET/CT standardised uptake values (SUV) were measured in the spleen, spinal BM, myocardial and pulmonary tissue. Cardiac target-to-background ratio (TBR) was calculated by indexing to blood-pool SUV. Myocarditis was assessed using the sensitive 2018 Lake Louise criteria (LLC), and viral load (by cycle threshold).Results13 patients had myocarditis on CMR (57%), 8 (30%) visually on 18F-FDG-PET/CT. There was no statistical difference comparing LLC positive and negative patients for BM (4.21±0.30, 4.98±0.56, P=0.23), spleen (4.40±0.40, 5.15±0.08, P=0.38) and lung (4.08±0.72, 4.16±0.91, P=0.94) SUV. Lung SUV was significantly associated with BM (r=0.61, P<0.001) and spleen (r=0.48, P<0.05) SUV. Cardiac TBR, T1 and T2 mapping showed no significant association with BM and spleen SUV (P>0.05 for all). Cycle threshold did not correlate with either cardiac TBR and T1 or T2 (p>0.05 for all).ConclusionReticuloendothelial system activation strongly correlated with lung activity, suggesting pulmonary injury is part of a systemic inflammatory process. Cardiac inflammation was not associated with either spleen, BM or viral load, suggesting injury is multifactorial.

2.
J Am Heart Assoc ; 11(18): e026399, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-2029585

ABSTRACT

Background Acute COVID-19-related myocardial, pulmonary, and vascular pathology and how these relate to each other remain unclear. To our knowledge, no studies have used complementary imaging techniques, including molecular imaging, to elucidate this. We used multimodality imaging and biochemical sampling in vivo to identify the pathobiology of acute COVID-19. Specifically, we investigated the presence of myocardial inflammation and its association with coronary artery disease, systemic vasculitis, and pneumonitis. Methods and Results Consecutive patients presenting with acute COVID-19 were prospectively recruited during hospital admission in this cross-sectional study. Imaging involved computed tomography coronary angiography (identified coronary disease), cardiac 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography/computed tomography (identified vascular, cardiac, and pulmonary inflammatory cell infiltration), and cardiac magnetic resonance (identified myocardial disease) alongside biomarker sampling. Of 33 patients (median age 51 years, 94% men), 24 (73%) had respiratory symptoms, with the remainder having nonspecific viral symptoms. A total of 9 patients (35%, n=9/25) had cardiac magnetic resonance-defined myocarditis. Of these patients, 53% (n=5/8) had myocardial inflammatory cell infiltration. A total of 2 patients (5%) had elevated troponin levels. Cardiac troponin concentrations were not significantly higher in patients with and without myocarditis (8.4 ng/L [interquartile range, IQR: 4.0-55.3] versus 3.5 ng/L [IQR: 2.5-5.5]; P=0.07) or myocardial cell infiltration (4.4 ng/L [IQR: 3.4-8.3] versus 3.5 ng/L [IQR: 2.8-7.2]; P=0.89). No patients had obstructive coronary artery disease or vasculitis. Pulmonary inflammation and consolidation (percentage of total lung volume) was 17% (IQR: 5%-31%) and 11% (IQR: 7%-18%), respectively. Neither were associated with the presence of myocarditis. Conclusions Myocarditis was present in a third patients with acute COVID-19, and the majority had inflammatory cell infiltration. Pneumonitis was ubiquitous, but this inflammation was not associated with myocarditis. The mechanism of cardiac pathology is nonischemic and not attributable to a vasculitic process. Registration URL: https://www.isrctn.com; Unique identifier: ISRCTN12154994.


Subject(s)
COVID-19 , Coronary Artery Disease , Myocarditis , Biomarkers , COVID-19/complications , Coronary Artery Disease/diagnosis , Cross-Sectional Studies , Female , Glucose , Humans , Male , Middle Aged , Myocarditis/diagnostic imaging , Troponin
SELECTION OF CITATIONS
SEARCH DETAIL